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SOLVABILITY OF NORM EQUATIONS OVER CYCLIC 
NUMBER FIELDS OF PRIME DEGREE 

VINCENZO ACCIARO 

ABSTRACT. Let L- Q[oaj be an abelian number field of prime degree q, and 
let a be a nonzero rational number. We describe an algorithm which takes as 
input a and the minimal polynomial of af over Q, and determines if a is a norm 
of an element of L. We show that, if we ignore the time needed to obtain a 
complete factorization of a and a complete factorization of the discriminant of 
af, then the algorithm runs in time polynomial in the size of the input. 

As an application, we give an algorithm to test if a cyclic algebra A = 

(E, a, a) over Q is a division algebra. 

1. INTRODUCTION 

In his survey paper on algorithms in algebraic number theory [8], H. W. Lenstra 
states 'Among the many other algorithmic questions in algebraic number theory 
that merit attention we mention ( ... ), problems from class field theory such as 
the calculation of Artin symbols, ( ... )'. In this paper we consider the following 
problem, which belongs naturally to class field theory: 

Let L = Q[a] be an abelian extension of the rationals of prime degree q, 
and a E Q, with a =& 0. Does the equation 

(1) NL/Q(A)= a 

admit any solution A in L? 
Note that we are not interested in finding a solution A, but simply determining 
whether a solution exists. Without loss of generality we can assume that a E 0, 
the ring of algebraic integers of L. 

If we assume that a E 2, the rational integers, and we ask for solutions of (1) in 
them algebraic integers, we can use an algorithm, due to U. Fincke and M. Pohst [12, 
p. 336], based on methods borrowed from the geometry of numbers, which works 
for any finite extension of Q. However, even if (1) is not solvable in the algebraic 
integers, it may still be solvable in Q[a]. 

In this paper we give a polynomial-time algorithm to determine if (1) is solvable, 
based on methods from class field theory. The input to our algorithm consists of a 
and the minimal polynomial m, (x) of a over Q. We assume that m, (x) is given in 
its dense representation, that is, as an array giving all its coefficients. If we ignore 
the time needed to obtain a complete factorization of a and a complete factorization 
of dL(a), the discriminant of a, then the algorithm runs in time polynomial in the 
size of the input. 
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Our algorithm is based on the celebrated Hasse Norm Theorem, which states 
that, for a cyclic extension K/k, an element a E k is a norm from K if and only if 
it is a local norm at every prime of K. As we will show below, it is possible to list 
a finite set of primes such that these are the only finite primes that must be taken 
into consideration in applying the Hasse Norm Theorem. Moreover, we will show 
in ?8 that the infinite primes play a role only in the quadratic case. Then, in ?9 we 
present the complete algorithm and discuss its complexity. 

As an application, we give in ?10 an algorithm to test if a cyclic algebra A of 
finite dimension n over Q is a division algebra. We assume that A is presented in 
the standard form [11, p. 277] as a triple (E, a, a), where E is a cyclic subfield of 
A of degree fn over Q, a is a generator of the Galois group of E/Q, and a is a 
nonzero element of (Q. The field E is given by the minimal polynomial mr(x) of a 
primitive element c for E over Q, and the automorphism a is given as a polynomial 
i(x) such that i(c) = a(c). 

Note 1. Using methods borrowed from noncommutative number theory, L. Ronyai 
developed an algorithm [13, 4] to test if a central simple algebra A over an algebraic 
number field K is a division algebra. The input to R6nyai's algorithm consists of a 
set of structure constants for A, and the algorithm runs in time polynomial in the 
size of the input, assuming the use of oracles for factoring integers and for factoring 
polynomials over finite fields. In contrast, we do not need to factor polynomials 
over finite fields. Ronyai's algorithm is very powerful, since it computes the index 
of A (for the definition of 'index' refer to ?10), thus allowing one to gain a lot of 
information about the structure of the algebra A. 

The algorithms described in this paper have been implemented using the number 
theory package PARI, developed in France by Professor H. Cohen and his collabo- 
rators. 

For the terminology and the basic concepts of algebraic number theory used in 
this paper we refer the reader to [5]. For the theory of associative algebras we refer 
the reader to [11]. 

2. NOTATION 

If B is a subgroup of a group A, (A: B) will denote the index of B in A, and 
Am the subgroup of A generated by the mth powers of the elements of A. 

If k is a subfield of a field K, [K: k] will denote the degree of the field extension 
K/k, and K* = K\{O} will denote the multiplicative group of K. 

Let L be an algebraic number field. By a prime of L we mean a class of equivalent 
valuations of L. Recall that the finite primes are in one-to-one correspondence with 
the prime ideals of (9, and the infinite primes with the embeddings a of L into C, 
the field of complex numbers. We will use the same symbol to denote a finite prime 
of L and the corresponding prime ideal of (9. 

Let P be a finite prime of L. If /3 E L and /3 $ 0, we will denote by Lop(p) the 
order of 3 at P, that is, the power of P in the factorization of the fractional ideal 
p3(9. We define vp (0) to be oc. The symbol Lp will denote the completion of L 
with respect to the P-adic valuation, and Op = {x E Lp I vp (x) > 0} the ring of 
P-adic integers. 

Let P be an infinite prime of L, that is, an embedding a: L -- C. The symbol 
Lp will denote the completion of L with respect to the (Archimedean) valuation 

t >-4 1o3). 
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Let p be a rational prime. If b E Q and b $ 0, then vp(b) will denote the order 
of b at p, that is, the power of the ideal pZ in the factorization of the fractional 
ideal bZ. We define vp(O) to be oc. The symbol Qp will denote the field of p-adic 
numbers, 2p the ring of p-adic integers, and Up the group of units of Zp. Finally, 

Fp will denote the finite field of p elements. 

3. CYCLIC NUMBER FIELDS OF PRIME DEGREE 

Fundamental to the entire construction is the following theorem (see [5, p. 156]). 

Theorem 1 (Hasse Norm Theorem). Let K/k be a cyclic extension. An element 
a E k* is a norm from K* if and only if a is a local norm at every prime (including 
the infinite primes) of k. 

We will deal with the infinite primes in ?8. Until then, all the primes considered 
will be finite. 

The following lemma tells us that the property of being Galois is preserved 
by the completions at the finite primes. For its proof we refer to [11, p. 347, Corol- 
lary c]. 

Lemma 1. Let K be a finite Galois extension of an algebraic number field k. Let 
p be a prime of k and P be a prime of K lying above p. Then Kp/kp is also Galois, 
and the Galois groups Gal(Kp/kp) and Gal(K/K n kp) are isomorphic. 

Throughout the following, L will denote a cyclic extension of prime degree q over 

(Q. Since L/Q is Galois, all the ideals lying above a rational prime p must have the 
same ramification index e and the same inertial degree f. Therefore, the degree 

[Lp: Qhp], which is equal to ef, is independent of the prime ideal P lying above 
p. Let g be the number of distinct prime ideals lying above p. From the formula 
efg = [L: Q] and the primality of q it follows that either e = 1 or e = q. 

Our first task is to recognize the decomposition type of a rational prime p in L. 
Since we do not wish to involve the cost of computing an integral basis, in the next 
section we will develop a fast algorithm to accomplish this task when an integral 
basis for L is not known. 

4. DECOMPOSITION OF PRIMES 

In the following, lemma we relate the decomposition of the minimal polynomial 

m.(x) of a over Qp- to the decomposition of p in L. 

Lemma 2. Let L = Q[a] be a cyclic number field of prime degree q, with a an 
algebraic integer, and let p be a rational prime. If p is inert or totally ramified in 
L, then ma (x) is irreducible over Qp . 

Proof. Let K = Q[/3] be an arbitrary number field. It can be shown (see [5, Exercise 
1, p. 92]) that if Pi (i = 1, ... , r) are the prime ideals lying above a rational prime p, 
with inertial degree fi and ramification index ej, then m3(x) splits into r factors in 

Q(p, of degree elfi,... , erfr. In our case we have r = 1 and so m.(x) is irreducible 
over Qp. ] 

The following corollary to Lemma 2 is an easy consequence of Hensel's Lemma. 

Corollary 1. Let L = Q[a] be a cyclic number field of prime degree q, with a an 
algebraic integer, and let p be a rational prime. If p does not split in L, then m, (x) 
is either irreducible over Fp or it is the qth power of a linear polynomial over Fp. 



1666 VINCENZO ACCIARO 

The next lemma exploits the Galois structure of L to obtain more information 
about the decomposition of the rational primes in L. 

Lemma 3. Let L = Q[a] be a cyclic number field of prime degree q, with a an 
algebraic integer, and let p be a rational prime. If p splits completely in L, then 
ma (x) splits into (possibly equal) linear factors over Fp. Conversely, if m, (x) has 
at least two distinct linear factors over Fp, then p splits completely in L. 

Proof. The first assertion follows easily from the fact that when p splits completely 
in L, the Frobenius automorphism of p has order one. 

To prove the second assertion, assume that p does not split in L and ma (x) 
g(x)h(x) (mod p), with g(x) and h(x) relatively prime. This clearly contradicts 
Corollary 1. 0 

The next lemma (see [3, Proposition 5.11, p. 102]) gives us a partial converse of 
Corollary 1. 

Lemma 4. Let K = Q[)3] be an algebraic number field, with /3 integral over 2, 
and let p be a rational prime. If the minimal polynomial m8 (x) of /3 over Q is 
irreducible over Fp, then p is inert in K. 

Combining the results obtained so far, we obtain the following. 

Lemma 5. Let L = Q[a] be a cyclic extension of Q of prime degree q, where a is 
an algebraic integer. Then its minimal polynomial ma (x) is either irreducible over 
Fp or it splits into linear factors over Fp. If ma (x) has at least two distinct roots 
in Fp, then p splits completely in L. If ma (x) has no roots in fp, then p is inert in 
L. 

The value of Lemma 5 lies in the fact that it is possible to check very effi- 
ciently whether its hypotheses are fulfilled. For this purpose we compute 1(x) = 

gcd(xP -x,ma (x)) over Fp. Then ma (x) has no roots in Fp precisely when 
deg 1(x) 0, and it is a qth power over FFp precisely when deg 1(x) = 1. [In practice 
we compute j(x) = xP mod m,(x) over FFp, using the binary powering algorithm 
(see [2, p. 8]); then 1(x) is given by gcd(j(x) - x, ma(x)).] 

Before proving the main theorem of this section, we need a last lemma (see [7, 
Proposition 11, p. 52]). 

Lemma 6. Let L = Q[a] be a cyclic number field of prime degree q with a E (, 
the ring of integers of L, and let p be a rational prime. 

If p ramifies in L and 7r E p\p2, where P denotes the unique prime ideal of ( 
above p, then the minimal polynomial m, (x) of ir is Eisenstein at p. Conversely, 
if the minimal polynomial m, (x) of some wr E 0 is Eisenstein at p, then p ramifies 
in L. 

Now we can state the main theorem of this section. 

Theorem 2. Let L = Q[a] be a cyclic number field of prime degree q with a E (, 
the ring of integers of L, and let p be a rational prime. Then: 

(i) If p is inert or totally ramified, then there exist m, h E Z such that 

(2) (a _M)/p E 

but no integers h', m' with h' > h such that 

= (a _ m,)/ph' E 0. 
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(ii) If p is inert in L, then m,(x) is irreducible over Fp. 
(iii) If p ramifies in L, then m-(x) = (x-c)q (mod p), with q t r = vp(NL/Q(-y-c)). 

Let s E N and I E Z be such that rs + ql = 1. Then ir = (Qy-c)spl satisfies an 
Eisenstein polynomial at p. 

Proof. By assumption, a E (9\Z. Assertion (i) comes from the fact that when p 
does not split completely, Oa ' Qp by Lemma 2, and so we must have (9 n Zp = 2. 
Note that L = Q[-y]. 

To prove (ii), assume that p is inert and m- (x) is not irreducible over Fp. Then, 
by Corollary 1 we would have m_(x) (x - c)q (mod p) for some c E 2. Hence 

- c E p0, and so (a - M - cph)/ph+1 e 0, contradicting the choice of h. 
To prove (iii), assume that p ramifies, and so p0 = pq, where P denotes the 

unique prime ideal of 0 above p. Since m-,(x) cannot be irreducible over IFp by 
Lemma 5, we must have m(x) =(x-c)q (mod p) for some c e 2. Then (_yc)q q 

p0, and so ay-c E P. We claim that ay-c 0 Pq. For otherwise, reasoning as above, 
we would have (a - m -_cph)/ph+1 E 0, contradicting the choice of h. Therefore 
a- c P\P'+',withO <r < q. Lets GNandl Zbesuchthat rs+ql = 1. 
It can be easily seen that ir = (-y - c)spl G p\p2, and therefore by Lemma 6 the 
polynomial m,(x) must be Eisenstein at p. 

The next lemma shows that the integer h given by (2) is 'small'. 

Lemma 7. Let us assume the notation of Theorem 2. If p is inert, then h = 

vp(dL(a))/(q(q - 1)). If p is totally ramified, then h < vp(dL(a'))/(q(q - 1)). 

Proof. Assume first that p is inert. Let E(p) = {x E Qjvp(x) > 0}, and let 0(p) 
denote the integral closure of 2(p) in L, which is equal to {x E LIvp(x) > O} since 
P is the unique prime ideal of 0 above p. Since -y is a primitive element for 0/P 
over Z/pZ, the set {f1, ,... ,yq- 1} is an integral basis for ((p) over E(p) (see [7, 
Proposition 23, p. 26]), and therefore vp(dL(-Y)) = 0. Now in general, when 6 E 0 
and b E 2, we have dL(p0) = pq(q-1)dL(6), and dL(p6 + b) = dL(p6), and therefore 

dL (a) = pq(-l)hdL (Y) , i. e., vp (dL (a)) = q(q - 1)h. This proves the first part of the 
lemma. 

Assume next that p ramifies. We have seen that in this case m (x) =(x- 

(mod p) for some c E 2, with y-c E pr\pr+l (O < r < q). Clearly, Vp(dL (-c)) > 
vp(dL). It is known (see [14]) that for odd q we have 

q - 1 if p 7q, 
vp(dL) ' Oor 2(q-1) if p= q. 

Moreover, it can be shown (see [2, Proposition 5.1.1, p. 218]) that when q = 2, we 
have 

1 if p 7~ 2, 'PKL)=J{2or3 if p=2. 

The same argument as above shows that vp(dL (a)) = q(q - 1)h + vp(dL (-C)), 
and so vp(dL (a)) > q(q - 1)h + vp(dL). It follows that 

h < (vp(dL (a)) - vp(dL))/(q(q - 1)), 

and hence h < vp(dL (a))/(q(q - 1)) D 
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procedure DECOMPOSE(p, n): 
if p t dL(/) 

then if m3(x) has no roots in JFp 
then return INERT 
else return SPLITS 

endif 
endif 
let h =vp(dL(0))/(q(q -1)); 
for i 1 to h do 

if m: (x) has exactly one root c in JFp 
then let / = (/3-c)/p; 

if m3(x) ' 2[x] 
then let /3 = p/3; 

return CONSTRUCTIEISENSTEIN(p, A) 
endif 

else return SPLITS 
endif 

endfor 
if mo(x) has exactly one root c in JFp 

then let d = f - c 
else if m3(x) has no roots in JFp 

then return INERT 
else return SPLITS 

endif 
endif 
return CONSTRUCTLEISENSTEIN(p, /3) 

FIGURE 1. The algorithm DECOMPOSE 

procedure CONSTRUCTLEISENSTEIN(p, /f): 
let r = vp(NL/Q(/)); 
if q i r 

then return SPLITS 
endif 
find s E N and 1 E Z such that rs + qi = 1; 
let ir = (/).Spl; 
if m,(x) is Eisenstein at p 

then return RAMIFIES and ir 
else return SPLITS 

endif 

FIGURE 2. Auxiliary procedure used by DECOMPOSE 
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Note 2. When p is inert, if u E Z and i < h = 
vp(dL(ca))/(q(q 

- 1)), then the 
minimal polynomial of (al - u)/pi cannot be irreducible over JFp. In fact, if w = 

(Oa - u)/pi, with i < h and u E 2, then the argument used in the proof of Lemma 7 
shows that vp(dL(w)) > 0. But then the set {1,WI ... ,wq-1} cannot be an integral 
basis for (9(p) over E(p), hence w cannot be a primitive element for 01/P over Z/pZ, 
and so m,(x) must be a qth power over 1Fp. 

The computation of the algebraic integer y that satisfies (2) is carried out by 
p-adic lifting. For this purpose we compute iteratively a sequence of algebraic 
numbers 71, Y2, ... as follows: if m-N-1 (x) (x-c,)q (mod p), where 7o = al, then 
we let yi = (-y&-i - ci)/p. From what has been said in this section it is clear that 
the process can stop as soon as either one of the following conditions is satisfied: 

(i) i = vp(dL(oa))/(q(q - 1)). By applying Theorem 2 to -y = -yi we are able to 
verify if p ramifies or it is inert in L. If neither cases are true, then p splits 
completely in L. 

(ii) yi ( 0 for i < vp(dL(oa))/(q(q - 1)). The note above shows that p cannot 
be inert, and so we have to check if p is ramified, by applying Theorem 2 to 
-y = ayi-1. If p is not ramified, then it splits completely. 

(iii) The minimal polynomial of yi, with i < vp(dL(oa))/(q(q - 1)), has at least two 
distinct roots in JFp. In this case p splits completely in L. 

The algorithm DECOMPOSE, shown in Figure 1, implements the ideas described 
above. It takes as input p and al, and returns INERT if p is inert in L = ?[a], 
SPLITS if it splits, and RAMIFIES plus an Eisenstein element ir if p ramifies. 

The argument following Lemma 5 shows that it is possible to check if ma(x) has 
no roots, at least two distinct roots or just one root in JFp - and in the last case 
compute the unique root, which has multiplicity q - in time polynomial in the size 
of p and in the degree q of ma (x). Moreover, it is not difficult to show that the 
size of ma is bounded by a polynomial in the size of ma. Therefore, the algorithm 
DECOMPOSE runs in time polynomial in the size of the input. 

5. THE UNRAMIFIED CASE 

In this section we deal with the case e = 1, that is, we assume that the prime p 
is unramified in L. 

The case when f = 1, that is, when p splits completely in L, is uninteresting, 
since we have Lp = Qp, and so any a E (2 is the norm of itself in the trivial 
extension of Qp. 

Hence we will restrict our attention to the case f = q, that is, when p is inert 
in L. Then Lp is a nontrivial unramified extension of Qp of degree q, so the next 
theorem characterizes completely the norm group of L-p/Qp. For its proof we refer 
to [1, Theorem 19, p. 141] and to [5, p. 153]. 

Theorem 3. Let Lp be an unramified extension of Qp of degree f over Qp. Let 
/=3pm'uEQ withuEUp, mEE. Then / E NL/(QP (L*) if and only if f I m. 
In particular, every unit of Q?p is the norm of a unit in Lp. 

6. THE TOTALLY RAMIFIED CASE 

For the totally ramified extensions of Qp, the problem of deciding whether an 
element of (2 is a local norm is harder. We need a preliminary lemma. 
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Lemma 8. Let u = Z,??0 uipi E Up, with ui integers, 0 < ui < p and u0 7& 0. If 
q 78 p is a prime, then u E Upq if and only if uo is a qth power modulo p. The index 
(Up: Upq) is equal to q if q p - 1, and it is equal to 1 otherwise. 

Proof. Clearly, if u is a qth power in Qp, then uo is a qth power modulo p. Con- 
versely, let g(x) = Xq- u. Consider the equation 

(3) g(x) = 0 

in Q?p. Assume that .q uo (mod p), where . g 0 (mod p), since uo g 0 (mod p). 
Now g'(dx) = qx.-l g 0 (mod p), and therefore, by Hensel's lemma [5, Proposition 
3.5, p. 83], we can lift x~ to a solution of the equation (3) in Up. 

If q t p-1, then every integer not divisible by p has a qth root (mod p). Therefore, 
the argument given above shows that every element of Up has a qth root in Up, and 
so (Up Uff) = 1. 

If q I p - 1, choose an integer w which is not a qth root (mod p). Since the 
group of units of Z/pZ is cyclic, the first part of the lemma shows that the set 
{ 1, W. ... ., W-} is a set of coset representatives for Upq in Up, and therefore (Up 
Upq) = q. D 

The next result, known as the fundamental equality of local class field theory, is 
valid for -any local field, and hence in particular for any p-adic field (see [7, Corollary, 
p. 221] and [7, Theorem 3, p. 219]). 

Theorem 4. Let K/k be a cyclic extension of local fields, with ramification index 
e. Let UK (resp. Uk) denote the group of units of K (resp. k). Then (Uk 
NK/k (UK)) = e and (k*: NK/k(K*)) = [K: k]. 

We can now characterize the norm groups of the totally ramified extensions of 
Qp of prime degree. 

Theorem 5. Let Lp be a totally ramified cyclic extension of Qp, of prime degree 
q, where q I p-1. An element u E Up is a norm of a unit in Lp if and only if u is 
a qth power in Up. 

Proof. Let Up denote the group of units of Lp. It is easy to see that NL,/QP (UP) D 

Up, since for any x E Up we have NL /PQ (X) = Xq. By Lemma 8 the index (Up: Upq) 
is equal to q. Then Theorem 4, with K = Lp, k = Qp and e = q = [Lp: Qp], gives 
us the desired equality NL,/QP (Up) = Upq. D 

Note 3. The case p =A q and q { p - 1, with LP a totally ramified cyclic extension 
of Qp of degree q, can never happen. Indeed, we certainly have NLP/QP (UP) D Up 
and Lemma 8 implies that Up = Upq. This contradicts Theorem 4 (for a different 
proof of this statement, which uses the conductor-discriminant formula, see [14]). 

Note 4. The remaining case p = q can be ignored, without incurring the risk of 
being incomplete. It is in fact true (see [5, p. 190]) that if K/Q is abelian and 
a E Q* is a p-local norm for all the primes p, with the possible exception of one 
particular prime, then a must be a local norm at that prime also. Thus, if a is not 
a local norm at the prime p = q, then there is a prime p' :A q for which a is not a 
local norm. Hence we can avoid consideration of the case p = q. 
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7. THE FINITE PRIMES: SUMMARIZING 

Let p be a rational prime and P be a prime ideal of (9 lying above p. We want 
to determine whether a E NL, /Q P(L*). 

If p splits completely in 0, then every a e Q* is a norm, and so this case is not 
interesting. 

The case where p is inert is also easily dealt with, as it has been shown in ?5. 
It remains to consider the case where p divides dL, the discriminant of L/Q, that 

is, when Lp is a totally ramified extension of Qp of degree q. We have seen that 
we can ignore the case p = q, so suppose p 7& q. Assume that we know an element 
Ui E Up such that 

(4) Pu1 E NL, /QP (L*). 

If a = ptu with u E Up, then we can write a = (pul)tu/ull and so a E NL,/QP (L) 
if and only if 

U 
(5) - E NLp /(p (L*) 

U1 1 

Now Theorem 5 tells us that (5) holds precisely when 

(6) t P 
U1 

Thus, we want to construct an element ui E Up which satisfies (4). For this 
purpose, take any ir C p\p2. Then vp(lr) = 1, and vp(NL/Q(lr)) = vp(7r) = 1. 
Since [L ?Q] = [Lp: QAp] = q, and q is prime, we have NL /QP(ir) = NL/?Q(ir). 
Hence, we can take ui = NLP/QP (7r)/p. 

Note 5. In order to decide if (6) is satisfied, we proceed as follows. We know that 
u/ut E Q* and vp(u/ut) = 0 by construction. We write u/ut as j/k with j, k E Z 
and gcd(j, k) =. 1, and then we compute m, n E Z such that mk + np = 1. Now 
jm e 2, and it can be shown (see [6, p. 12]) that vp(u/ut - jm) > 1. Lemma 
8 then tells us that u/ut is a qth power in Up if and only if jm is a qth residue 
modulo p, and it is well known (see [10, Theorem 2.27, p. 64]) that this holds if 
and only if 

( jm) (Pl)/cd(pl) _1 (mod p), 

that is, if and only. if 

= -1 (mod p) 

since q I p -1. 

8. THE INFINITE PRIMES 

Since L = Q[a] is Galois over Q, then either L is totally real, that is, all the 
possible embeddings of L in C are real, or L is totally complex, that is, all the 
embeddings are nonreal (see [2, Def. 4.1.9]). 

Since [L: Q] = q is a prime number, if q =A 2, then q is odd, and hence L 
must necessarily be totally real. If [L : Q] 2, then L is complex precisely when 
dL(oa) < 0. 

Given any infinite prime oc, if L is totally real, then Loo = iR, and if L is totally 
complex, then Loo = C. The completion of Q at its unique infinite prime is R. 
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In the totally real case, any element of R is the norm of itself in the trivial 
extension of DR. In the totally complex case we have NC/R (C) = R+, the nonnegative 
reals. The latter case can only arise when q = 2. 

9. THE TEST 

We now describe an algorithm to decide if a E Q* is a norm in L/Q. 
Write a as r/s, with r E 2, s E Z\{0}, and gcd(r, s) = 1. The considerations 

in ?7 show that the only finite primes that must be taken into account are those 
which divide r, those which divide s, and those which divide dL, and that we may 
ignore the prime q. Recall that dL(oa) can be computed by the formula 

(7) dL(al) = (-l)q(q1)/ N /(mT(a)), 

where m' (x) denotes the formal derivative of ma (x). Once a complete factorization 
of dL (o) is known, we can use the algorithm DECOMPOSE to determine which 
prime factor p of dL (o) ramifies in L, and for each ramified prime a corresponding 
element ir whose norm has p-order 1. 

The complete algorithm NORM is shown in Figure 3. It takes as input a and 
ma(x), and returns TRUE if a e NL/?Q(L*), FALSE otherwise. 

procedure NORM(a, ma (x)): 
if ([L: Q] = 2 and dL(a) < 0 and a < 0) then 

return FALSE 
endif 
construct the set RP of ramified primes; 
express a as r<s, with r, s E Z and gcd(r, s) = 1; 
let NP be the set of positive primes dividing r; 
let DP be the set of positive primes dividing s; 
for all the p in RP U NP U DP, with p # q do 

let t = vp(a); 
if p ' RP then 

if (p is inert and q t t) then 
return FALSE 

endif 
else 

let ir E L be such that vp(NL/Q(lr)) = 1; 
let u = a/(NL/Q(ir)t); 
express u as j/k, with j, k E Z and gcd(j, k) = 1; 
compute m, n E Z such that mk + np = 1; 
let z= (p- 1)/q; 
if (jm)z 0 1 (mod p) then 

return FALSE 
endif 

endif 
endfor 
return TRUE 

FIGURE 3. The algorithm NORM 



NORM EQUATIONS OVER CYCLIC NUMBER FIELDS OF PRIME DEGREE 1673 

In analyzing the complexity of the algorithm NORM, we will ignore the cost of 
factoring a and dL(ca). Let us define size(m), for m E Z, to be the number of bits 
needed to represent m, and size(a) to be size(r) + size(s). 

We want to show that the algorithm NORM runs in time polynomial in the size 
of the input. For this purpose it is enough to show that the size of the primes 
involved in the test is bounded by size(a) + size(ma(x))0(1). Now, Mahler's bound 
on the discriminant of a polynomial [9, Corollary to Theorem 1, p. 261] implies 
that size(dL(ca)) is bounded by size(ma(x))0(1). Since dL I dL(ca), it follows that 
the size of each prime divisor of dL is bounded by size(ma(x))0(1) as well. Since 
dL(ca) can have at most log IdL(ca)l prime divisors, it follows that the size of the list 
of primes dividing dL(oa) is bounded by size(ma(x))0(1). 

10. TEST OF CYCLIC ALGEBRAS OVER Q FOR ZERO DIVISORS 

Let A be a central simple algebra of finite dimension n over Q. Recall that the 
dimension n of a central simple algebra A over the base field is always a square 
number; the positive integer d = \/Vi is called the degree of A. 

By the Wedderburn structure theorem, any central simple algebra A over a field 
F is isomorphic to a full matrix algebra over a, possibly noncommutative, finite 
extension D of F. The degree of D over F (as an algebra) is called the (Schur) 
index of A. Clearly, A is a division algebra if and only if its index and its degree 
are the same. 

On the other hand, it is known from Brauer's theory (see [11, p. 260]) that, for 
some finite number h, the tensor product A 0... 0 A (h times) is isomorphic to a 
full matrix algebra over F. The smallest such h is called the exponent of A. 

An important class of central simple algebras is given by the cyclic algebras. 
They can be defined in a concrete way as follows (see [11, p. 277]): 

Definition 1. A finite-dimensional associative algebra A over a field F is called 
cyclic if it is generated over F by two elements c and b such that: 

(i) The subalgebra F[c] of A generated by c is a cyclic extension field E of F of 
degree d, say; 

(ii) b is invertible and b-1cb = v(c), where a is a generator of the Galois group 
Gal(E/F); 

(iii) bd E F*. 

It follows from this characterization that A is a central simple algebra of dimen- 
sion d2 over F with basis {cibkj0 < i, k <d}. Let a = bd. We denote the algebra A 
by (E,oa). 

Although cyclic algebras have an uncomplicated structure, as the next theorem 
shows they are quite general (see [11, p. 359] for a proof). 

Theorem 6 (Brauer-Hasse-Noether). Every central simple algebra over an alge- 
braic number field is cyclic, and its index is equal to its exponent. 

In particular, every division algebra over Q is cyclic. The theorem that follows 
is basic for our construction - for its proof we refer to [1, p. 98]. 

Theorem 7 (Albert). Let E/F be a cyclic extension of commutative fields of de- 
gree d. Then the cyclic algebra (E, a, a) has exponent d if and only if a a NL/F(L*) 
for each minimal subfield L of E over F. 
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Note that in the case F is an algebraic number field, Theorems 6 and 7 give a 
criterion for (E, a, a) to be a division algebra. 

Given a cyclic algebra A = (E, a, a), we can use the algorithm NORM developed 
in the previous sections to check if the conditions of Theorem 7 are satisfied. 

The minimal subfields of E are in one-to-one correspondence with the maximal 
subgroups of Gal(E/Q). For each prime q dividing d, let Hd/q = (U7(q)) denote the 
unique maximal subgroup of Gal(E/Q) of order d/q, and let Lq denote the unique 
minimal subfield of E of degree q corresponding to it. To find Lq, compute 

(8) hq(x) = (xq- ( (C))(X - a2q(C)) ... (X -ad(c)). 

It is a standard fact from Galois theory (see [15, p. 169]) that the coefficients of 
hq(x) lie in Lq and they generate Lq over Q. From the minimality of Lq it follows 
that any coefficient of hq(x) which does not lie in Q is a primitive element for Lq 
over Q. Note that the number of subfields which must be considered is bounded 
by size(d) = size(n)/2, since Llog dJ is an upper bound for the number of prime 
divisors of d, and size(d) is equal to LlogdJ + 1. 

ACKNOWLEDGEMENTS 

The author is indebted to Professor J.D. Dixon for his invaluable advice and 
extremely helpful comments. The author also wishes to thank Professor V.L. Plan- 
tamura and Professor K.S. Williams for their constant support. 

REFERENCES 

1. A.A. Albert, Structure of algebras, A.M.S. Colloquium Publications 24, 1961. MR 23:A912 

2. H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993. 

MR 94i:11105 
3. D.A. Cox, Primes of the form x2 + ny2, John Wiley and Sons, New York, 1989. MR 

90m:11016 
4. G. Ivanyos and L. R6nyai, Finding maximal orders in semisimple algebras over Q, Comput. 

Complexity 3 (1993), 245-261. MR 95c:11154 
5. G.J. Janusz, Algebraic number fields, Academic Press, London, 1973. MR 51:3110 

6. N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Springer-Verlag, New York, 

1984. MR 86c:11086 
7. S. Lang, Algebraic number theory, Addison-Wesley, Reading, Massachusetts, 1970. MR 44:181 

8. H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 

211-244. MR 93g:11131 
9. K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 

257-262. MR 29:3465 
10. I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and 

Sons, New York, 1980. MR 81g:10001 
11. R.S. Pierce, Associative Algebras, Springer-Verlag, Berlin, 1982. MR 84c:16001 
12. M.E. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge Univ. Press, 

Cambridge, 1989. MR 92b:11074 
13. L. R6nyai, Algorithmic properties of maximal orders in simple algebras over Q, Comput. 

Complexity 2 (1992), 225-243. MR 94e:11143 
14. B.M. Urazbaev, On the discriminant of a cyclic field of prime degree, Izvestiya Akad. Nauk 

Kazah. SSR 97 (1950), Ser. Math. Meh. 4 (1950), 19-32. MR 15:403c 
15. B.L. van der Waerden, Algebra, Volume 1, Springer-Verlag, Berlin, 1991. MR 91h:00009a 

SCHOOL OF COMPUTER SCIENCE, CARLETON UNIVERSITY, OTTAWA, ONTARIO, KIS 5B6, 
CANADA 

E-mail address: acciarofseldi2.uniba. it 


